Abstract
Relapses in acute myeloid leukemia (AML) are caused by chemoresistant leukemic populations and new therapeutic approaches that specifically target these cells are urgently needed. Based on transcriptomic analyses of relevant PDX preclinical model of the resistance to cytarabine (AraC) and of the residual disease in patients, we identified ecto-nucleoside triphosphate diphosphohydrolase-1 CD39 (ENTPD1) overexpressed in the residual leukemic cells in vivo after chemotherapy. By flow cytometry, we confirmed that AraC increased cell surface CD39 expression in AML cell lines in vitro and in vivo as well as in 24 diverse patient-derived xenograft models. We further observed this increase in 100 patients at 35-days post-intensive chemotherapy compared to their respective diagnosis. Interestingly, high CD39 expression on AML patients was associated with a worse response to AraC in vivo. Furthermore, we showed that FACS-sorted CD39high AML cells had increased mitochondrial mass and activity, and were resistant to AraC in vitro and in vivo. We demonstrated that CD39 downstream signaling pathway was dependent on cAMP-PKA-PGC1a-TFAM axis and its inhibition by H89 sensitized AML cells to AraC through the inhibition of mitochondrial OxPHOS biogenesis and function. Finally, pharmacological inhibition of CD39 ATP hydrolase activity or genetic invalidation of CD39 protein using two inhibitors or shRNA markedly enhanced AraC cytotoxicity in AML cell lines and primary patient samples in vitro and in vivo. Together, these results indicate CD39 as a new player of the intrinsic chemoresistance pathway and a new therapeutic target to specifically overcome AraC resistance and eradicate these leukemic cells responsible for relapses in AML.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.